

COMTES FHT a.s.

R&D in metals

Activities

- Development of technologies
- Materials research
- Measurement and testing
- Consultancy and training

Development of technologies

- Development and optimisation of forming and heat treatment technologies
- Computer and physical modelling of metallurgical processes
- Development and construction of prototypes
- Design of forming tools and jigs

Materials Research

- Ultrafine structures in metallic materials
- Multi-phase steels with very good cold formability and high strength upon final deformation
- Use of transformation-induced plasticity in steel-forming processes
- Microalloyed steels for thin-walled castings with improved mechanical properties
- Production of components from high-purity steels for power industry equipment
- Development of high-strength low-alloyed steels
- Rapid carbide spheroidisation
- Accelerated annealing processes for steels

Measurement and testing

- Mechanical testing including accredited tests
- Metallographic analysis including accredited tests
- Development of materials models for numerical simulations
- Hardenability and hardness testing
- Construction of CCT and TTT diagrams
- Thermophysical measurement
- Tribological measurement
- Spectrometric analysis
- Materials investigation reports
- Magnetic measurement

Consultancy and training

- Metallic materials and their processing technologies
- Preparation of R&D projects

Organigram

Overview of departments

Metal mould sizes:

10

 \emptyset 210 × 1230 mm \emptyset 110 × 720 mm for 450 kg for 50 kg

 \emptyset 300 × 1400 mm for 500 kg

Materials are made and cast in a vacuum melting furnace to customer specifications

Physical simulation of forming

600 500 After process Before process 400 optimisation and 300 optimisation and with added 200 without micromicroalloying 100 alloying elements. 0 elements: better No microalloys Microalloyed Ti, V, NB YS [MPa] 326 433 strength and fine ■ TS [MPa] 480 microstructure. 155 Charpy [J] 179

Development of microalloyed steels: forming and heat treating

Conventional annealing

Conventional hardening

ASR annealing

Hardening after ASR

The ASR process provides:

- Time and energy savings
- Finer carbides
- Finer austenite grain
- Finer martensite after quenching and tempering
- Improved mechanical properties

Implementation:

- Thermomechanical treatment (carried out in rolling mills and other equipment)
- Induction heat treatment

 ASR (Accelerated Spheroidisation and Refinement) – accelerated soft annealing and recrystallization annealing

Implementation:

- Quenching + deep freezing below -100 °C
- Holding at the deep cryogenic temperature of approx. 2 – 15 hours, depending on the size of the part and the chemical composition of steel
- Conventional tempering

Effects:

- Elimination of retained austenite
- Refinement of martensite and carbides
- Improved wear resistance

Deep cryogenic treatment of steel

R&D efforts

- Diffusion bonding of various types of steels by means of hot rolling
- Potential for combining various mechanical properties
- Capability to create highly attractive visual patterns
- Plain carbon as well as stainless steels
- Knife making, jewellery making and other fields
- Max. size: 380 × 4000 mm; thickness: 3-8 mm

Industrially-produced rolled Damascus steel

- Grain refinement, most notable in titanium alloys to less than 1 μm
- 60 − 80 % increase in strength
- For medical applications (implants), precision engineering (shafts for mechanical watches) and others

Creating ultrafine structures in metallic materials

R&D efforts

Benefits of Software-Controlled Forging

- Rapid and accurate design of new manufacturing processes
- Prediction of strains, forces and temperatures during the process
- Repeatability of production and consistent quality
- Correct production documentation
- Development of process know-how

Automatic generation of open-die forging sequences

Measurement of data for simulating aircraft seat crash tests

Enhancing the passive safety of buses

Eddy simulation in an FEM model of a tramway wheelset at 16 m/s.

Modelling of a complex manufacturing route for a rail wheel

21

R&D efforts

WPQR – weld assessment

Longitudinal metallographic section through the central electrode. In the weld, partial dilution between the Pt-Ir tip and nickel wire is visible.

Analysis and development of spark plugs

Dynamic bending test of a cooler
FLIR X 6580sc high-speed
thermal imaging camera footage

Taking miniature samples on site

 Dynamic compression test in a drop weight tower with induction heating (900 °C, $\dot{\varepsilon} > 300 \, s^{-1}$)

RUMUL magnetic resonance testing machine

Preparation of a fatigue crack in specimens

Results of measurement: CTOD

Fracture surface upon testing

• CTOD testing – 300 kg specimen, $1170 \times 200 \times 260$ mm

Awards for research and development activities

First prizes awarded in the Czech Republic

Our people

Results

Financial turnover of the company

Client references

EINEN SCHRITT VORAUS.

ŠKODA JS a.s.

