

Additive Manufacturing - Directed Energy Deposition Applications

Application fields

- Manufacturing of highly customized components
- Manufacturing of components with very special properties (corrosion resistance, thermal conductivity etc.)
- Optimization of tools and molds by printing of special active parts
- Renovation of worn tools, cutting edges etc.

InssTek MX-600 DED machine

- AM by Direct Energy Deposition method
- 2kW Ytterbium fiber laser
- Working area: 450 x 600 x 350 mm
- Motion: 5 axis
- Multi-material deposition / 4 powder feeding systems
- Three deposition regimes:
 - SDM 800 (beam diameter 800 μm, layer thickness 250 μm),
 - SDM 1600 (beam diameter 1600 μm, layer thickness 600 μm)
 - SDM 2400 (beam diameter 2400 μm, layer thickness 900 μm)
- DMT mode the printer changes the laser power to maintain a continuous layer
- Particle distribution 50 150 μm

http://www.insstek.com/content/standard/mx600?ckattempt=1

www.comtesfht.cz

DED application in hot forming processes

Tools optimization using Nimonic 80A

- Material for hot application such as forging, trimming, rolling, ...
- Powder with a particle distribution in the range of 45 106 μm
- Chemical composition (weight %):

Ni	С	Mn	Cr	Со	Fe
Bal.	0.1	1.0	19.5	2.0	3.0

Mechanical properties of deposited Nimonic 80A

- Material shows anisotropic behavior, therefore the properties were measured in 3 directions
- Hardness ± 260 HV10
- Mechanical properties :

Direction	R _{p0,2} [MPa]	R _m [MPa]	A _g [%]
Х	714 ± 4	945 ± 6	21 ± 1.2
Y	692 ± 12	939 ± 4	23.9 ± 0.4
Z	613 ± 5	809 ± 2	41.4 ± 0.7
Interface	-	793 ± 8	-

Metallographic analysis of deposited Nimonic 80A

- Porosity less than 0.1%
- No cracks observed
- Heat affected area less than 0.3 mm
- The microstructure is formed by an austenitic matrix with the presence of carbide particles

7

Scale 50x

Scale 1000x

Trimming punch

- <u>Goal</u>: increasing of the tool life in trimming proces at the hot forging temperature
- Trimming punch was made of C45 steel
- Deposition of the cutting edge in the shape of annular area
- ✓ Old technology:
 - Additive welding (electrode made of 1.2567)
 - Tool life 300 pcs., re-sharpening after each 50 pcs.
- ✓ DED deposition:
 - Nimonic 80A powder
 - Tool life test is still running, currently **810 pcs. without resharpening**

Trimming punch

Process costs of DED deposition: lower than 3 times re-sharpening

Trimming die for connecting rod

- <u>Goal</u>: increasing of the tool life in trimming proces at the hot forging temperature
- Trimming die was made of S355 steel
- Deposition of cutting edge
- ✓ Old technology:
 - Additive welding (special steel electrode)
 - Tool life 300 pcs
 - Re-sharpening needed after each 60 pcs
- ✓ DED deposition:
 - Nimonic 80A powder
 - Tool life test is still running, currently 1448 pcs. without re-sharpening

Trimming die for connecting rod

Process costs of DED deposition: lower than 3 times re-sharpening

www.comtesfht.cz

DED application in cold forming processes

Insert for deep drawing test device

- Functional surface of a deep drawing demonstrator tool
- Basic material DIN 1.2343
- Deposited material DIN 1.2709
- Tool life test is still running

Insert for cutting tool

- Functional surface of the tool for sheet cutting of S500MC
- Basic material DIN 1.2312
- Deposited from M2
- Tool life test is still running, currently 50 000 pcs.

www.comtesfht.cz

Material Ti-6Al-4V Grade 5 - demonstrator

Chemical composition (weight %):

and in the

A subar production where the

Material IN718 - demonstrator

Chemical composition (weight %):

17

Molten salt pump impeller

Material IN718

Turbine blade (length 300 mm)

- Material AISI 316 steel
 - Chemical composition (weight %):

Fe	Cr	Ni	Мо
Bal.	17	12	2,5

References

DOOSAN Škoda Power

